MiRNA-124 is a link between measles virus persistent infection and cell division of human neuroblastoma cells
نویسندگان
چکیده
Measles virus (MV) infects a variety of lymphoid and non-lymphoid peripheral organs. However, in rare cases, the virus can persistently infect cells within the central nervous system. Although some of the factors that allow MV to persist are known, the contribution of host cell-encoded microRNAs (miRNA) have not been described. MiRNAs are a class of noncoding RNAs transcribed from genomes of all multicellular organisms and some viruses, which regulate gene expression in a sequence-specific manner. We have studied the contribution of host cell-encoded miRNAs to the establishment of MV persistent infection in human neuroblastoma cells. Persistent MV infection was accompanied by differences in the expression profile and levels of several host cell-encoded microRNAs as compared to uninfected cells. MV persistence infection of a human neuroblastoma cell line (UKF-NB-MV), exhibit high miRNA-124 expression, and reduced expression of cyclin dependent kinase 6 (CDK6), a known target of miRNA-124, resulting in slower cell division but not cell death. By contrast, acute MV infection of UKF-NB cells did not result in increased miRNA-124 levels or CDK6 reduction. Ectopic overexpression of miRNA-124 affected cell viability only in UKF-NB-MV cells, causing cell death; implying that miRNA-124 over expression can sensitize cells to death only in the presence of MV persistent infection. To determine if miRNA-124 directly contributes to the establishment of MV persistence, UKF-NB cells overexpressing miRNA-124 were acutely infected, resulting in establishment of persistently infected colonies. We propose that miRNA-124 triggers a CDK6-dependent decrease in cell proliferation, which facilitates the establishment of MV persistence in neuroblastoma cells. To our knowledge, this is the first report to describe the role of a specific miRNA in MV persistence.
منابع مشابه
Herpes Simplex Virus Type 1 Latency-Associated Transcript Reduces Human Neuroblastoma Cell Proliferation
Background and Aims: The latency-associated transcript (LAT) transcribed by latent Herpes Simplex Virus type-1 in neuron cells are able to influence their host cell pathways. While the most of previous studies were focused on anti-apoptotic effects of LAT, our investigation is making an effort to explore LAT potency on cell cycle pathway in neuroblastoma cell lines. Methods: The evaluation of L...
متن کاملTyrosine phosphorylation of measles virus nucleocapsid protein in persistently infected neuroblastoma cells.
Subacute sclerosing panencephalitis is a slowly progressing fatal human disease of the central nervous system which is a delayed sequel of measles virus (MV) infection. A typical pathological feature of this disease is the presence of viral ribonucleocapsid structures in the form of inclusion bodies and the absence of infectious virus or budding viral particles. The mechanisms governing the est...
متن کاملEffect of Heavy Metals on Silencing of Engineered Long Interspersed Element-1 Retrotransposon in Nondividing Neuroblastoma Cell Line
Background: L1 retrotransposons are the most active mobile DNA elements in human genome. Unregulated L1 retrotransposition may have deleterious effect by disrupting vital genes and inducing genomic instabilities. Therefore, human cells control L1 elements by silencing their activities through epigenetic mechanisms. It has been shown that cell division and heavy metals stimulate the frequency of...
متن کاملIn vitro and in vivo infection of neural cells by a recombinant measles virus expressing enhanced green fluorescent protein.
This study focused on the in vitro infection of mouse and human neuroblastoma cells and the in vivo infection of the murine central nervous system with a recombinant measles virus. An undifferentiated mouse neuroblastoma cell line (TMN) was infected with the vaccine strain of measles virus (MVeGFP), which expresses enhanced green fluorescent protein (EGFP). MVeGFP infected the cells, and cell-t...
متن کاملReversal of the measles virus-mediated increase of phosphorylating activity in persistently infected mouse neuroblastoma cells by anti-measles virus antibodies.
To investigate the effect of persistent measles virus infection on signal transduction in cells of neuronal origin, the mouse neuroblastoma cell line NS20Y/MS, which is persistently infected with measles virus, was used. The results demonstrate an approximate 50% increase in total phosphorylation and a similar increase in protein kinase C (PKC) activity. Western blot analysis with anti-total PK...
متن کامل